Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Pharmacol ; 222: 116110, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460908

RESUMEN

This study investigates the anticancer activity and pharmacological mechanisms of Corynoxine (Cory) in non-small cell lung cancer (NSCLC). Cory, a natural product derived from the Chinese herbal medicine Uncaria rhynchophylla, demonstrates promising pharmacological activity. Cell proliferation and viability were evaluated via MTT and colony formation assays. Flow cytometry was employed to analyze cell apoptosis, cycle distribution, and mitochondrial membrane potential. Autophagy was detected using fluorescence microscopy and electron microscopy. Western blotting, protein overexpression, gene knockdown, co-immunoprecipitation, and bioinformatics characterized Cory's impact on signaling pathways. The research indicates that Cory inhibits the proliferation of NSCLC cells in vivo and in vitro. Cory enhances PP2A activity, inhibits the AKT/mTOR signaling pathway triggering autophagy, while suppressing the AKT/GSK3ß signaling pathway to induce cellular apoptosis in NSCLC. Notably, the activation of PP2A plays a crucial role in Cory's antitumor effects by inhibiting AKT. In vivo experiments validated Cory's efficacy in NSCLC treatment. These findings highlight the promising role of Cory as a lead compound for drug development in NSCLC therapy, providing a viable option for addressing this challenging disease.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Indoles , Neoplasias Pulmonares , Compuestos de Espiro , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Neoplasias Pulmonares/metabolismo , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis , Proliferación Celular , Autofagia
2.
J Ethnopharmacol ; 328: 117932, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38382652

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Colitis is an important risk factor for the occurrence of colorectal cancer (CRC), and the colonization of Fusobacterium nucleatum (Fn) in the intestines accelerates this transformation process. Banxia Xiexin Decoction (BXD), originating from Shanghanlun, is a classic prescription for treating gastrointestinal diseases. Current researches indicate that BXD can effectively delay the colitis-to-cancer transition, but it is still unclear whether it can inhibit Fn colonization to achieve this delaying effect. AIM OF STUDY: This study explored the effect and mechanism of BXD in inhibiting Fn intestinal colonization to delay colitis-to-cancer transition. MATERIALS AND METHODS: We constructed a mouse model of colitis-to-cancer transition by regularly gavaging Fn combined with azoxymethane (AOM)/dextran sodium sulfate (DSS), and administered BXD by gavage. We monitored the body weight of mice, measured the length and weight of their colons, and calculated the disease activity index (DAI) score. The growth status of colon tumors was observed by hematoxylin and eosin (H&E) staining, and the changes in gut microbiota in each group of mice were detected by 16S rDNA analysis. Immunohistochemistry was used to detect the expression of E-cadherin and ß-catenin in colon tissues, and immunofluorescence was used to observe the infiltration of M2 macrophages in colon tissues. In cell experiments, we established a co-culture model of Fn and colon cancer cells and intervened with BXD-containing serum. Malignant behaviors such as cell proliferation, invasion, and migration were detected, as well as changes in their cell cycle. We examined the protein levels of E-cadherin, ß-catenin, Axin2, and Cyclin D1 in each group were detected by Western blot. We used US1 strain (fadA-) as a control and observed the effects of BXD-containing serum on Fn attachment and invasion of colon cancer cells through attachment and invasion experiments. RESULTS: BXD can inhibit the colitis-to-cancer transition in mice infected with Fn, reduce crypt structure damage, improve gut microbiota dysbiosis, upregulate E-cadherin and decrease ß-catenin expression, and reduce infiltration of M2 macrophages, thus inhibiting the process of colitis-to-cancer transition. Cell experiments revealed that BXD-containing serum can inhibit the proliferation, migration, and invasion of colon cancer cells infected with Fn and regulate their cell cycle. More importantly, we found that BXD-containing serum can inhibit the binding of Fn's FadA adhesin to E-cadherin, reduce Fn's attachment and invasion of colon cancer cells, thereby downregulating the E-cadherin/ß-catenin signaling pathway. CONCLUSIONS: These findings show that BXD can inhibit Fn colonization by interfering with the binding of FadA to E-cadherin, reducing the activation of the E-cadherin/ß-catenin signaling pathway, and ultimately delaying colitis-to-cancer transition.


Asunto(s)
Colitis , Neoplasias del Colon , Medicamentos Herbarios Chinos , Animales , Ratones , beta Catenina/metabolismo , Fusobacterium nucleatum/metabolismo , Transducción de Señal , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Colon
3.
Phytomedicine ; 124: 155263, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181532

RESUMEN

BACKGROUND: Anomalous activation of NF-κB signaling is associated with many inflammatory disorders, such as ulcerative colitis (UC) and acute lung injury (ALI). NF-κB activation requires the ubiquitination of receptor-interacting protein 1 (RIP1) and NF-κB essential modulator (NEMO). Therefore, inhibition of ubiquitation of RIP1 and NEMO may serve as a potential approach for inhibiting NF-κB activation and alleviating inflammatory disorders. PURPOSE: Here, we identified arteannuin B (ATB), a sesquiterpene lactone found in the traditional Chinese medicine Artemisia annua that is used to treat malaria and inflammatory diseases, as a potent anti-inflammatory compound, and then characterized the putative mechanisms of its anti-inflammatory action. METHODS: Detections of inflammatory mediators and cytokines in LPS- or TNF-α-stimulated murine macrophages using RT-qPCR, ELISA, and western blotting, respectively. Western blotting, CETSA, DARTS, MST, gene knockdown, LC-MS/MS, and molecular docking were used to determine the potential target and molecular mechanism of ATB. The pharmacological effects of ATB were further evaluated in DSS-induced colitis and LPS-induced ALI in vivo. RESULTS: ATB effectively diminished the generation of NO and PGE2 by down-regulating iNOS and COX2 expression, and decreased the mRNA expression and release of IL-1ß, IL-6, and TNF-α in LPS-exposed RAW264.7 macrophages. The anti-inflammatory effect of ATB was further demonstrated in LPS-treated BMDMs and TNF-α-activated RAW264.7 cells. We further found that ATB obviously inhibited NF-κB activation induced by LPS or TNF-α in vitro. Moreover, compared with ATB, dihydroarteannuin B (DATB) which lost the unsaturated double bond, completely failed to repress LPS-induced NO release and NF-κB activation in vitro. Furthermore, UBE2D3, a ubiquitin-conjugating enzyme, was identified as the functional target of ATB, but not DATB. UBE2D3 knockdown significantly abolished ATB-mediated inhibition on LPS-induced NO production. Mechanistically, ATB could covalently bind to the catalytic cysteine 85 of UBE2D3, thereby inhibiting the function of UBE2D3 and preventing ubiquitination of RIP1 and NEMO. In vivo, ATB treatment exhibited robust protective effects against DSS-induced UC and LPS-induced ALI. CONCLUSION: Our findings first demonstrated that ATB exerted anti-inflammatory functions by repression of NF-κB pathway via covalently binding to UBE2D3, and raised the possibility that ATB could be effective in the treatment of inflammatory diseases and other diseases associated with abnormal NF-κB activation.


Asunto(s)
Artemisia annua , Artemisininas , Colitis Ulcerosa , Animales , Ratones , FN-kappa B/metabolismo , Enzimas Ubiquitina-Conjugadoras , Factor de Necrosis Tumoral alfa/metabolismo , Lipopolisacáridos/farmacología , Cromatografía Liquida , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Colitis Ulcerosa/tratamiento farmacológico , Lactonas , Inflamación/metabolismo
4.
Int Immunopharmacol ; 124(Pt B): 110965, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37741124

RESUMEN

Isolinderalactone is the main sesquiterpene lactone isolated from Lindera aggregata, a traditional Chinese medicine widely used to treat pain and inflammation. Although isolinderalactone has been demonstrated to possess anti-cancer effect, its anti-inflammatory activity and underlying mechanism has not been well characterized. Herein, isolinderalactone was able to significantly inhibit the production of NO and PGE2 by reducing the expressions of iNOS and COX2 in LPS-stimulated RAW264.7 macrophages and BMDMs, and decreased the mRNA levels of IL-1ß, IL-6, and TNF-α in LPS-induced RAW264.7 cells. In vivo, isolinderalactone effectively alleviated LPS-induced acute lung injury (ALI), which manifested as reduction in pulmonary inflammatory infiltration, myeloperoxidase activity, and production of PGE2, IL-1ß, IL-6, TNF-α, and malondialdehyde. Furthermore, isolinderalactone inhibited phosphorylation of IKKα/ß, phosphorylation and degradation of IκBα, and nuclear translocation of NF-κB p65, thereby blocking NF-κB pro-inflammatory pathway. Meanwhile, isolinderalactone reduced the intracellular ROS through promoting the activation of Nrf2-HMOX1 antioxidant axis. By using drug affinity responsive target stability assay and molecular docking, isolinderalactone was found to covalently interact with IKKα/ß and Keap1, which may contribute to its anti-inflammatory action. Additionally, a thiol donor ß-mercaptoethanol significantly abolished isolinderalactone-mediated anti-inflammatory action in vitro, indicating the crucial role of the unsaturated lactone of isolinderalactone on its anti-inflammatory effects. Taken together, isolinderalactone protected against LPS-induced ALI in mice, which may be associated with its inhibition of NF-κB pathway and activation of Nrf2 signaling in macrophages.


Asunto(s)
Lesión Pulmonar Aguda , Sesquiterpenos , Animales , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Antiinflamatorios/farmacología , Quinasa I-kappa B/metabolismo , Interleucina-6/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Lactonas/farmacología , Lactonas/uso terapéutico , Lactonas/metabolismo , Lipopolisacáridos/farmacología , Macrófagos , Simulación del Acoplamiento Molecular , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo
5.
Phytother Res ; 37(10): 4587-4606, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37353982

RESUMEN

Ferroptosis, an iron-dependent cell death characterized by lethal lipid peroxidation, is involved in chronic obstructive pulmonary disease (COPD) pathogenesis. Therefore, ferroptosis inhibition represents an attractive strategy for COPD therapy. Herein, we identified natural flavonoid scutellarein as a potent ferroptosis inhibitor for the first time, and characterized its underlying mechanisms for inhibition of ferroptosis and COPD. In vitro, the anti-ferroptotic activity of scutellarein was investigated through CCK8, real-time quantitative polymerase chain reaction (RT-qPCR), Western blotting, flow cytometry, and transmission electron microscope (TEM). In vivo, COPD was induced by lipopolysaccharide (LPS)/cigarette smoke (CS) and assessed by changes in histopathological, inflammatory, and ferroptotic markers. The mechanisms were investigated by RNA-sequencing (RNA-seq), electrospray ionization mass spectra (ESI-MS), local surface plasmon resonance (LSPR), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA), and molecular dynamics. Our results showed that scutellarein significantly inhibited Ras-selective lethal small molecule (RSL)-3-induced ferroptosis and mitochondria injury in BEAS-2B cells, and ameliorated LPS/CS-induced COPD in mice. Furthermore, scutellarein also repressed RSL-3- or LPS/CS-induced lipid peroxidation, GPX4 down-regulation, and overactivation of Nrf2/HO-1 and JNK/p38 pathways. Mechanistically, scutellarein inhibited RSL-3- or LPS/CS-induced Fe2+ elevation through directly chelating Fe2+ . Moreover, scutellarein bound to the lipid peroxidizing enzyme arachidonate 15-lipoxygenase (ALOX15), which resulted in an unstable state of the catalysis-related Fe2+ chelating cluster. Additionally, ALOX15 overexpression partially abolished scutellarein-mediated anti-ferroptotic activity. Our findings revealed that scutellarein alleviated COPD by inhibiting ferroptosis via directly chelating Fe2+ and interacting with ALOX15, and also highlighted scutellarein as a candidate for the treatment of COPD and other ferroptosis-related diseases.


Asunto(s)
Apigenina , Ferroptosis , Enfermedad Pulmonar Obstructiva Crónica , Ratones , Animales , Araquidonato 15-Lipooxigenasa/metabolismo , Lipopolisacáridos , Enfermedad Pulmonar Obstructiva Crónica/patología , Quelantes del Hierro , Hierro
6.
Aging (Albany NY) ; 15(4): 1004-1024, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36795572

RESUMEN

Due to various unpleasant side effects and general ineffectiveness of current treatments for prostate cancer (PCa), more and more people with PCa try to look for complementary and alternative medicine such as herbal medicine. However, since herbal medicine has multi-components, multi-targets and multi-pathways features, its underlying molecular mechanism of action is not yet known and still needs to be systematically explored. Presently, a comprehensive approach consisting of bibliometric analysis, pharmacokinetic assessment, target prediction and network construction is firstly performed to obtain PCa-related herbal medicines and their corresponding candidate compounds and potential targets. Subsequently, a total of 20 overlapping genes between DEGs in PCa patients and the target genes of the PCa-related herbs, as well as five hub genes, i.e., CCNA2, CDK2, CTH, DPP4 and SRC were determined employing bioinformatics analysis. Further, the roles of these hub genes in PCa were also investigated through survival analysis and tumour immunity analysis. Moreover, to validate the reliability of the C-T interactions and to further explore the binding modes between ingredients and their targets, the molecular dynamics (MD) simulations were carried out. Finally, based on the modularization of the biological network, four signaling pathways, i.e., PI3K-Akt, MAPK, p53 and cell cycle were integrated to further analyze the therapeutic mechanism of PCa-related herbal medicine. All the results show the mechanism of action of herbal medicines on treating PCa from the molecular to systematic levels, providing a reference for the treatment of complex diseases using TCM.


Asunto(s)
Medicamentos Herbarios Chinos , Neoplasias de la Próstata , Masculino , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Fosfatidilinositol 3-Quinasas , Reproducibilidad de los Resultados , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética
7.
Front Pharmacol ; 13: 817596, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35321327

RESUMEN

Dehydrocostus lactone (DCL) is a major sesquiterpene lactone isolated from Aucklandia lappa Decne, a traditional Chinese herbal medicine that used to treat gastrointestinal diseases. This study aimed to examine the therapeutic effects of DCL on dextran sulfate sodium (DSS)-induced colitis with a focus on identifying the molecular mechanisms involved in DCL-mediated anti-inflammatory activity in macrophages. First, oral administration of DCL (5-15 mg/kg) not only ameliorated symptoms of colitis and colonic barrier injury, but also inhibited the expression of proinflammatory cytokines and myeloperoxidase in colon tissues in DSS-challenged mice. Furthermore, DCL also exhibited significant anti-inflammatory activity in LPS/IFNγ-stimulated RAW264.7 macrophages. Importantly, DCL significantly suppressed the phosphorylation and degradation of IκBα and subsequent NF-κB nuclear translocation, and enhanced the nuclear accumulation of Nrf2 in LPS/IFNγ-treated RAW264.7 cells. Mechanistically, DCL could directly interact with IKKα/ß and Keap1, thereby leading to the inhibition of NF-κB signalling and the activation of Nrf2 pathway. Furthermore, DCL-mediated actions were abolished by dithiothreitol, suggesting a thiol-mediated covalent linkage between DCL and IKKα/ß or Keap1. These findings demonstrated that DCL ameliorates colitis by targeting NF-κB and Nrf2 signalling, suggesting that DCL may be a promising candidate in the clinical treatment of colitis.

8.
Front Oncol ; 11: 775418, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869024

RESUMEN

BACKGROUND: Cancer stem cells (CSCs) are able to survive after cancer therapies, resulting in tumor progression and recurrence, as is seen in colorectal cancer. Therapies targeting CSCs are regarded as novel and promising strategies for efficiently eradicating tumors. Berberine, an isoquinoline alkaloid extracted from the Chinese herbal medicine Coptis chinensis, was found to have antitumor activities against colorectal cancer, without knowing whether it exerts inhibitory effects on colorectal CSCs and the potential mechanisms. METHODS: In this study, we examined the inhibitory roles of Berberine on CSCs derived from HCT116 and HT29 by culturing in serum-free medium. We also examined the effects of Berberine on m6A methylation via regulating fat mass and obesity-associated protein (FTO), by downregulating ß-catenin. RESULTS: We examined the effects of Berberine on the tumorigenicity, growth, and stemness of colorectal cancer stem-like cells. The regulatory effect of Berberine on N6-methyladenosine (m6A), an abundant mRNA modification, was also examined. Berberine treatment decreased cell proliferation by decreasing cyclin D1 and increasing p27 and p21 and subsequently induced cell cycle arrest at the G1/G0 phase. Berberine treatment also decreased colony formation and induced apoptosis. Berberine treatment transcriptionally increased FTO and thus decreased m6A methylation, which was reversed by both FTO knockdown and the addition of the FTO inhibitor FB23-2. Berberine induced FTO-related decreases in stemness in HCT116 and HT29 CSCs. Berberine treatment also increased chemosensitivity in CSCs and promoted chemotherapy agent-induced apoptosis. Moreover, we also found that Berberine treatment increased FTO by decreasing ß-catenin, which is a negative regulator of FTO. CONCLUSIONS: Our observation that Berberine effectively decreased m6A methylation by decreasing ß-catenin and subsequently increased FTO suggests a role of Berberine in modulating stemness and malignant behaviors in colorectal CSCs.

9.
Biochem Pharmacol ; 190: 114622, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34043967

RESUMEN

Lung cancer is the leading cause of cancer deaths in the world. Non-small cell lung cancer (NSCLC), with poor prognosis and resistance to chemoradiotherapy, is the most common histological type of lung cancer. Therefore, it is necessary to develop new and more effective treatment strategy for NSCLC. Nur77, an orphan member of the nuclear receptor superfamily, induces apoptosis in cancer cells including NSCLC cells, by high expression and translocation to mitochondria. Small molecules trigger expression and mitochondrial localization of Nur77 may be an ideal anti-cancer drug candidate. Here, we report malayoside, a cardiac glycoside in the extract of Antiaris toxicaria Lesch., had different sensitivities to NSCLC cells. Malayoside induced apoptosis in NCI-H460 cells. Meanwhile, malayoside induced Nur77 expression and mitochondrial localization, and its induction of apoptosis was Nur77-dependent. To investigate the molecular mechanism of malayoside inducing Nur77 and apoptosis, we found that malayoside activated MAPK signaling pathway, including both ERK and p38 phosphorylation. The suppression of MAPK signaling activation inhibited the expression of Nur77 and apoptosis induced by malayoside. Our studies in nude mice showed that malayside potently inhibited the growth of tumor cells in vivo. Furthermore, the anti-cancer effect of malayosidwas in vivo was also related to the elevated expression of Nur77, p-ERK, and p-p38 proteins. Our results suggest that malayoside possesses an anti-NSCLC activity in vitro and in vivo mainly via activation of MAPK-Nur77 signaling pathway, indicating that malayoside is a promising chemotherapeutic candidate for NSCLC.


Asunto(s)
Antiaris/química , Apoptosis/efectos de los fármacos , Glicósidos Cardíacos/farmacología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas , Glicósidos Cardíacos/química , Línea Celular Tumoral , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Desnudos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Fitoterapia , Transporte de Proteínas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA